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Abstract 

This paper is mainly devoted to the presentation and discussion of formulas for 
the cross section of photon diffractive dissociation. The calculations which we present 
in a very detailed way are based on perturbative &CD. We improve formulas which 
describe this process in the Triple Regge Limit where the square of the missing mass 
Mx (the invariant mass of the bunch of secondary hadrons) is much larger than IQ*/ 
and extend the range of validity to the region where A4; is of the same order as lQ*l. 
The comparison with calculations done by Mueller and Qui [l] leads us to the conclusion 
that whenever quarks are involved in the triple ladder vertex the AGK cutting rules 
are violated whereas for gluons these rules seem to work. 
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1 Introduction: 

Diffraction dissociation processes in general provides us with the basic information on the 
dynamics of “softn interaction. In the framework of the old-fashioned reggeon approach 
the soft interaction at high energies was reduced to the interaction between Pomerons via 
the triple Pomeron coupling constant (Gsp see fig. 1.1). Its value was extracted from 
experimental data on diffractive dissociation with a large missing mass (invariant mass of the 
bunch of secondary hadrons Mx) [?, ?] ( see fig. 1.1). Although there are large uncertainties 
in the value of GsP (see [?]) the procees of diffractive dissociation gives the only possibility 
to estimate this value. 

The process of diffractive dissociation in deep inelastic scattering looks especially inter- 
esting for three reasons: 

1. The natural scale of hardness, namely, the large value of ]&*I (see fig. 1.2) gives 
hope to develop the theoretical approach to this process within perturbative QCD. Such an 
approach was suggested in the paper of GLR [?] and h as b een developed in a series of recent 
papers [?, ?, ?]. 

2. The virtual photon in the diffractive dissociation probes the structure of the Pomeron. 
This means that this process could lead to a better understanding of the Pomeron structure. 
The idea to describe the diffractive dissociation process with the help of a Pomeron structure 
function was firstly introduced by Ingelman and Schlein [?] and has been discussed from 
another point of view in ref. [?, ?, ?, ?]. The p er ur a rve approach to the diffractive t b t’ 
dissociation allows to examine the above ideas on a theoretical basis and helps to clarify 
what the Pomeron structure is. 

3. The diffractive dissociation in deep inelastic scattering is closely related to the screen- 
ing (shadowing) corrections in deep inelastic scattering through the AGK cutting rules [?] 
as was noted in [?I. So diffractive dissociation can give direct information on the screening 
(shadowing) corrections, and the theoretical understanding of their nature is equivalent to 
the understanding of the nature of the screening (shadowing) corrections. Moreover, experi- 
mental studies of diffractive dissociation will test our understanding of screening corrections 
in the most direct way. 

The main goal of this paper is to develop the Leading Log Approximation (LLA) of the 
diffractive dissociation of the virtual photon in the framework of perturbative QCD and to 
present reliable formulas for this process. We should mention that we cannot present the 
final answer of this process but we hope that this paper is the first stage of the theoretical 
approach and provides a solid basis for the interpretation of HERA’s future experimental 
data. 

The paper is organized in the following way: in section 2 we discuss the kinematics, the 
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small parameters and the main results which include the evolution equation of the process 
and some comparison of the idea of the Pomeron structure function with our QCD approach. 
Section 3 contains the Born approximation of the production of two quarks, i.e. quark and 
anti-quark, and the production of two quarks with an additional gluon (3-jet event). Section 
4 deals with the problem how to generalize to an infinite number of jets. In section 5 we 
summarize our results, and the appendix contains all technical details of the calculations. 

2 The strategy of the approach and the main results: 

2.1 Kinematics and notations: 

In this section we would like to outline our approach and we begin with the kinematics and 
the notations that we are going to use throughout the paper. 

First of all we would like to introduce the light-cone vector q* which characterizes the 
incoming virtual photon. 

Q’, = Q, + xBPe (2.1) 

IQ21 
X8 = ~(Q,P) 

is the usual Bjorken variable. The main property of Q: is the fact that 

Q’* = &"+‘h~(Q,p)= 0 

(2.2) 

As energy variable we use 
s = ‘~Q,P) (2.4) 

It is easy to see that 
3 E (Q +P)~ = (1 - xB)s (2.5) 

We expand all the momenta of the particles in our reaction in terms of QL and p, using 
Sudakov variables [?I. As example we take the momentum u OBwhich is transferred along 
the Pomeron and write it as: 

up = au&: + AP + utp (2.6) 

Using eq. (2.6) we can express the mass of the produced particles Mi through (Y, and pu in 
the following way: 

A4; = (Q + u)” = (1 + a,)(&, - 5~)s + u; (2.7) 
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while 
(p - u)’ = m2 or aus - tt; = 0 

From eq. (2.7) and (2.8) we get 

A = 
M; + IBs - Uf 

(1 + 4s 

M 
M; + 5@ - IL: 

~ M; + Is&‘1 
S 

(2.8) 

(2.9) 

since ~cx,/ = $ < 1. 

An important assumption for the diffractive dissociation process is the smallness of the 
missing mass M,y compared to the total energy fi z fi. This means that (see eq. (2.9)) 

& - =B < 1 (2.10) 

For each produced particle we have the condition that its energy is positive. With this 
condition we can formulate the following constraints on ol; and /3i : 

w&o + (pi + %xB)pO > 0 

-au&o + (1 - bu - %L~B)PO > 0 

Finally, the energy momentum conservation leads to the equation: 

1+cu, = cc% 

/&+xB = k,% . 

(2.11) 

(2.12) 

2.2 The scale of hardness: 

If we want to apply perturbative QCD to the diffractive dissociation process, we need to 
specify the scale of hardness that appears in this process. Our first and natural scale is 
the large value of /Q21. But, this scale is not enough to apply the method of perturbative 
QCD. We need to specify what the Pomeron in QCD is. Our present understanding of the 
Pomeron in QCD could be expressed in the following way: the Pomeron is a ladder diagram 
(see fig. 2.1). This approach can be justified only, if we assume that the initial virtuality 

IQ:1 is sufficiently large and the final vituality [@:I 1’ res f ar above the initial one, namely, 

IGil B I&El and 4lQil) K 1 (2.13) 
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It has to be stressed that we have to introduce both parameters Qu and GO ad hoc. Indeed, 
IQ:] (transverse momentum of the parton inside the proton) is the starting value for the 
GLAP-evolution equation [?I. If we know the proton structure function at IQ:], the GLAP- 
evolution equation gives the structure function at the larger scale IQ’]. However, in the 
diffractive dissociation only partons with a transverse momentum which is substantially 
smaller than IQ21 are involved. In order to treat this case we need to assume that the 
minimal transverse momentum of the produced particles is large enough (I/c;,] 2 ]Gs]) to 
be sure that perturbative QCD still works while calculating the cross section. A negative 
consequence is that we cannot calculate the total cross section of diffractive dissociation. 
What we actually do is to calculate a part of the diffractive dissociation, namely, the cross 
section of the following process: 

r*(Q’) + P --t .$s(lhje,l L lF20l) + X + P’ (2.14) 

Now, we would like to summarize what we are able to calculate. It is the process of jet 
production in the diffractive dissociation with 

I’tj.tl 2 1~~1 where IQ21 B IGil B IQ:1 (2.15) 

In the course of our paper we will discuss the natural scale for I?&], and we will present 
some estimates for the total cross section of diffractive dissociation. 

2.3 Small parameters and leading logs of the approach: 

In this subsection we would like to clarify what our small parameters are and which type 
of logs we are able to sum in the Leading Log Approximation (LLA) of perturbative &CD. 
We first have a look on the Double Leading log Approximation (DLA). This approximation 
was used in earlier calculations of diffractive dissociation [?, ?]. It is capable to explain the 
most typical and important features of this process. In our paper we concentrate on the 
generalization to the case of single leading log approximation and do some improvement in 
the DLA-region. 

Now let us list the parameters for DLA: 

a,ln&Sl , a,ln~ 5 1 

da) ‘K 1 
o.ln&ln~ 2 I 

(2.16) 



and 

a,ln$<l , 3 
Y a,ln$Il 

4IQ~l) +c 1 (2.17) 

s’ a,ln~ln$> 1 

Using these small parameters we are able to calculate the cross section of the process shown 
in eq. (2.14) in the kinematical region: 

1 > ,% >> ZB 

IQ21 B- IDct B- IQ3 (2.18) 

I4 g IQ:1 
The set of parameters in eq. (2.16) and (2.17) indicates the kind of logs we take into account. 
It is clear from fig. (2.2) that we sum all logs due to integration over /3i and kc, of the emitted 
partons (In i In Ik:tj) while we calculate the structure of the Pomeron in DLA. 

The most important property of the cross section for diffractive dissociation in comparison 
to the usual leading log approach of the deep inelastic structure function is the higher 
twist integral over the transverse momentum of the slowest parton which has no logarithmic 
character and looks as follows (see also fig. 2.2): 

IQ’1 dlk;I 
J- 13 k,4 

(2.19) 

This integral indicates the need of introducing the lower cut off /@iI for lkF/. If there were 
none, the integral above could dominate at the absolutely lowest bound IQ:], i.e. there would 
be no room for the Pomeron to evolve. We have to take care and introduce a new lower 
bound which lies sufficiently far above lQ:l. Another point which is illustrated by expression 
(2.19) is the fact that, since QCD is a dimensionless theory, the extra dimension coming 
from the integration over the momentum transferred along the Pomeron (in our case the 
integral over uf) is compensated by &. The extra power in the denominator of expression 

(2.19) also suggests the conclusion thit the main contribution to the total cross section of 
reaction (2.14) originates from the region where k, N G,, and that we can neglect logs of the 

type In g But this is not always the case s. As soon as we write down the corresponding 

evolutio&quation this problem becomes relevant, for we need to take the derivative of (2.19) 

at IQ’1 and all possible logs of the type In $ change into logs of the type In ?$ which are 

essential. 

‘The complete integral over IkZl could have a saddle point above I@1 
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We are going to improve our DLA approach by expanding it to the following kinematical 
region: 

1 >> pu 2 ZB 

IQ21 B l@l B IQ;1 (2.20) 

I4 < IQ3 
In this region we sum all logs In g but a, In pU QZ < 1 This means that the energy (p; 

in fig. 1.2) of the produced particles may be uniformly distributed among them without 
any ordering. In this region it becomes very difficult to calculate all essential logs. In DLA 
we can manage this problem, but in the single log region In g we will neglect logs of the 

the type In 2 under the integral in (2.19). S o, we face the problem now, that due to the 

complexity of the complete procedure we cannot do more than calculating the cross section 
in the kinematical region where the slowest produced jet has a transverse momentum close 
to Go. But, we hope that a numerical analysis of this process will justify this restriction. 
More details about this problem will be given later. 

There is one more kinematical region which may be studied with the help of the calcu- 
lations presented in this pape?. This region is: 

IQ”1 2 lK$l s- IQ8 z+ 14 (2.21) 

In this case we have o, In h > 1 but Q, In g < 1 and there is no ordering of the transverse ZB - 
momenta of the produced particles. 

In the following we discuss two more regions which may be of interest for future exper- 
iments at HERA or hadron-hadron colliders which we have not calaculated yet. The first 
region is: 

1 >> /3, > ZB 

IQ*1 2 I4 = IGil 2 IQ3 (2.22) 

The momentum transferred along the Pomeron (u:) now plays the role of the lower cut off. 
This region is most natural for perturbative calculations since the Pomeron is now completely 
hard. 

The second region is: 

1 >> j% >> IB 

IGil zz+ IQ21 B IQ3 (2.23) 

3We do not consider this case explicitly. 
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In this kinematical region the jet production is the hard process and the jet with its large 
transverse momentum can be viewed as the probe of the process. The diffractive dissociation 
in deep inelastic scattering in this region is a good model for hard jet production in hadron- 
hadron collision. 

At the end of this subsection we would like to mention another small parameter which 
is & where N denotes the number of colours. Due to this small parameter a large amount 

of gluon emission producing double logs of the type In zg A In $$ is suppressed. This class of 

contributions we will neglect. 

2.4 The main properties of the answer: 

In this subsection we start the discussion of the final result for the cross section of reaction 
(2.14). The details of the calculation will be given in the next subsections. 

The result is the generalized formula of GLR [?] now valid in the kinematical region 
(2.20) 4 and looks as follows s: 

/3,, duDD 
d/k MI ( Y*+p+jet(lktI > lKJol)+x+P’) = 

lb:l4Q~l 

(2.24) 

i;‘)lyZI) m;cZ/,D,” (&t IQ% /411)] . 

[BUG (L I.w> 14?:1)]’ 
All notations should be clear from fig. 2.2. G, sG denotes the proton form factor which is 1 for 
u: = 0 Any function D stands for the particle distribution of a dressed parton (quark or 
gluon) after evolution from some low to some large virtuality. In expression (2.24) we have 
to be more careful with the treatment of our scales than we did before. As usual ]&‘I gives 
the upper bound of our virtualities ]lc2] and 14’1, but IQ:] we introduced as lower boundary 
of the transverse momentum squared ]!Y$]. Since we use ]k*] as variable of integration we 

have to devide gz by 1 -z due to the relation ]kf] = (1 - t)]P]. Which value the argument 
of (Y, should take can be found in ref. [?I. F o 11 owing this paper we rescale the argument of u, 

‘except the third term in expr. (2.24) as will be explained under point 2 of this subsection 
5for transverse polarized photons 
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from ]ks] to (1 -z)]!?], i.e we take ]!$I as argument for 01,. The main new results of equation 

(2.24) are the splitting functions ‘Pp”, @$ and 5:. The first two describe the interaction 
of the Pomeron with quarks and gluons. New in comparison with the GLR-formula is the 
Pomeron interaction with quarks. This process has been calculated in the paper [?] and 
[?] but with two different results. So we repeated OBthe calculation in a slightly different 
technique and found the splitting function ‘P$ which is the corrected version of [?] and which 
coincides with the result in [?I. B esi d es, we found the second splitting function @ which 
describes the interaction of the Pomeron with gluons not only in the region of small z (Triple 
Regge Region) but also for z of the order of 1. This means that we extended the region of 
applicability to the complete region including large missing masses (M,v) as well as small 
missing masses. 

1. Splitting functions: 

Before we go on with our discussion we should give the explicit expressions for the new 
splitting functions: 

@g(z) = &16z’(l -2) 

a@) = g&4+ - 2)’ (1! + y (2.25) 

g(z) = 3z(l - z)(22 - 1) 

2. GHr-structure junction : 

The first two splitting functions were firstly derived in [?I. The third splitting function 
in eq. (2.25) is a modified Altarelli-Parisi splitting function. It is part of the third term 
in the square brackets of eq. (2.24) w rc we name GHT-structure function. It was firstly h’ h 
introduced by Mueller and Qiu [?I. Our splitting function 5: is different compared to theirs 
due to the fact that they used the double multiperipheral cut to evaluate GHT instead of the 
diffractive cut as we did. In our understanding the GHT-coniribution is beyond the leading 
order due to the extra factor $ which results in some log In Z& But, as we mentioned in the 

subsection before we are not allowed to neglect this contribution. We hope that the following 
short calculations will shed some light on the problem of this next to leading contribution. 

The basic point in our approach is the fact that the integration over the transverse 
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momentum of the slowest produced parton has the form s: 

Indeed, if, for example, out of n partons m are produced with smaller transverse mometum 
than kt their contribution to the cross section turns out to be small. In LLA we would have 
to evaluate an integral of the type: 

4 J~~~n(n--i ($) In” (5) $$ 

The integral (2.27) yields 

1 --a”In(“-“) 
lm s 

(2.27) 

(2.28) 

In the expression above we kept only the terms with the leading number of logs. Since 
lgil << IQ21 the maximal answer will occur when m = 0. This means that we do not need 
to take into account the emission of gluons which are slower in their transverse momentum 
than &. However, if the whole sum of all logs In(g) I ea s d t o a function which is large (of 

the order exp acr, In(g) 
t 

) we cannot trust the estimations above. In this case integral 

(2.27) is proportional to 

l-law, [&ln+-) ($i) - +j ($J’“‘) (2.29) 

We can see that in the case of acy, > 1 we need to take into account all contributions of 
the kind In($) Another example where the integral in eq. (2.24) does not dominate at 

the lower limit IGil but at the upper limit IQ’1 ’ g 1s iven under point 4 in this subsection. We 
can summarize the situation in the following way: in a rough estimation of the cross section 
for diffractive dissociation we can neglect GHT but for the sake of completeness and for the 
evolution equation we need to take into account this contribution. 

There is one important shortcoming in the expression of GHT in eq. (2.24) which we have 
not mentioned yet. It is valid only in the region of small z (Tripple Regge Region). That is 
why we put only + in front of the third term in eq. (1.24) and not the complete splitting 
function. We hope that in future we are able to improve the accuracy of our answer. 

3. AGK-cutting rules: 

61n order to simplify the discussion here we neglect any factor (1-z) 
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Formula (2.24) allows us to check the AGK-cutting rules [?] using the result of Mueller 
and Qui [?I. They calculated the screening (shadowing) corrections to deep inelastic scat- 
tering in the double multiperipheral cut (both ladders are cut) assuming the validity of the 
AGK-cutting rules. The AGK-cutting rules in general say that the total diffractive cross 
section which includes the integration over ]uf] and pU should be equal to the screening 
corrections with opposite sign. Fig. 2.3 shows graphically what the integration over pU and 
]u:] means. To perform this integration we need to specify the bottom vertex in fig. 2.3 in 
the same way as it was done in ref. [?I. 

It is easy to see from eq. (2.25) that the amplitude M which describes the interaction of 
the Pomeron with the proton is equal to 

JW~I) = ~G;,&:I) 
P. 

(2.30) 

and does not depend on pU. p’ denotes some state with the quantum numbers of the proton. 
All structure functions in eq. (2.24) do not depend on uf. So, the integrated total cross 
section of the diffractive dissociation is proportional to 

(2.31) 

To compare with the value of screening correction we do not need to specify eq. (2.31) because 
the same integral determines the value of screening corrections r. Finally the conclusion of 
the comparison is the following one: 

A. In the case of the gluon-Pomeron vertex the AGK-cutting rules work and our answer 
coincides with that of Mueller and Qui (with opposite sign of course). 

B. For the quark-Pomeron vertex, however, we got quite a different result. This means that 
AGK-cutting rules do not work in this case. We consider this result as very instructive but 
disappointing. A complete investigation of the AGK-cutting rules we prefer to postpone to 
a separate publication. We think that the observation we made here is very important and 
motivated us to present here the detailed calculations of the diffractive dissociation cross 
section including the discussion of all possible contributions to this process. 

4. h’inematical region 2 + 1 : 

It is very instructive to consider the cross section in the kinematical region 2 c 1 

Here, we can integrate over ]ks] in eq. (2.24) without any additional cutoff IQ:], or in other 

words, the natural cutoff turns out to be ]# E IQ’] s. Indeed, in the region g x 1 we 

‘detailed discussion on this subject see ref. [?] and appendix A. 
%e ref. [?] where this problem was firstly discussed. 
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can use the following asymptotic expression: 

OF” (6 lQ21> l4) = exP’$@-;QEf;j; &)I cl _ z)scz(~~-~~)-~ (2.32) 

where & is defined as & = 2 In ln( 9). I nserting eq. (2.32) in eq. (2.24) yields 

Pu daDD(y’p + XP) = F 
4azeza 87? 1 z - ; 

di3, dlu:l F ;” - / dz 1-z A; dt-k IQ’P Nb 2 
c* [3 - 4^/E + 4ln(l - z)] ([Q - &) - 2b& - ebtk} 

r [4cZ(‘tQ - Sk)] 

[AD: (A, lk’l, IQil)]” . (2.33) 

One can see that in the region where k is very close to 1 the integration over & has a saddle 
point near to the upper bound tQ. 

This is one example how a natural scale for gi could appear in our process. The only 
problem that we have is the accuracy of our approach, since in this kinematical region we 
cannot apply our selection of log contributions. In the integral over \k21 not only small 

I/?[ e IQ:\ are essential but also sufficiently large ones. We suspect that in this case not 
only the slowest partons have the spectrum $. However in this kinematical region there is 
only a small number of produced secondary partons in the upper ladder of fig. 2.2. So here 
we are able to justify our approach. 

5. Evolution equation for the diffmctive dissociation structure function: 

Now, we would like to introduce a structure function which describes the contribution 
to the structure function of deep inelastic scattering due to diffractive dissociation at fixed 
mass Mx. Namely 

0% ;A IQ% IQ:1 = ( ) 
= /- ~G;G(Iu~l)l’dl~~l /-A $ /(‘v az((l ;6z)lb21) 

[r,F(+‘;” (;> ) IQ?, I~? + @(4@G (~>lQ21.:kli) + (2.34) 

lo” 4q21 %((1 - d142i) q&/jD2G 
47r (5, IQ’L Id)] 

. [AD: (Pw I~% IQ~I)]” . 
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Differentiating equation (2.34) with respect to ln( .2) leads to the following evolution @ 
equations: 

a 

aIn ’ 
DD (~Ju~lQ21&7:l) = 

= 
J 

1 df 4(1 - z)IQ’l) 
i?;Z 

4n [m:(4qDD (;A IQ% Igil) 

+ Q;(z) GDD (;A IQ’I, lG:l)] + 

+ f I”Y(~~ji\*+:l 
{ 

d (Cl- Z;> IQ*l) q,; i 
16 ( ) 

[puDp” (pu, IpI, lQ;l)]z t 

8N2 P” 
+ N* - 1 z / 

IQ21 dlk2/ a;(/k*l) 
la1 lk21 16 J 

1-s dz B, 
E 

. ~((1 - ~)IQ”I) -q 
4% 

Q~(z)) [w, (L WI, IQ:I)]’ } ; 

(2.35) 

a 
aIn GDD (;,A, IQ% Igil) = 

= 
J 

l & 4(1 - ~)lQ”I) 
ez 

4?r ~:bh”” (;A lQW:l) 

+ c$(z) GDD (&LlQ21,1~~l)] t 

+ 
J~~:GW~24~~l 4 ((I- k) IQ?) aG 

IQ*1 16 
[AC,” (AIQ~I, IQEI)]’ 

F - Here, we use the notation D,, - q DD and DgD = GDD. The functions @i , @f , @g and 
@g are the usual splitting functions in the GLAP-equation. The other splitting functions 

were defined in equation (2.25). Up to now we used lQ:l as lower bound of the tranverse 

momentum squared Ikf 1. In a simpler version of equation (2.35) we give I@ a new meaning 
actually as the starting virtuality of the evolution. Strictly speaking, since llc~l = (I- z)l/?I, 
this redefinition leads to a different result than we would get from equation (2.34) but 
withinOB our approach this should not be too serious. In the same context we go back from 
I k: 1 to I k2 I as argument of a,. 

The two equations above now give the possibility to discuss the idea of Ingelman and 
Schlein [?] to introduce a Pomeron structure function which is simply the solution of the 
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usual GLAP-evolution equation with some special initial condition. At first glance on eq. 
(2.35) we conclude that it is impossible to introduce something like the structure function 
of the Pomeron. This becomes clear even by looking at eq. (2.34), since the structure 
function that corresponds to the Pomeron exchange (&OF) explicitly depends on the internal 
virtuality lk’l and cannot be replaced by the flux of the Pomeron as it was done in ref. [?I. 
However, in the region of not extremely small /3” ( see point 7) when the value of (/?,,Df)’ 
cannot compensate the factor & in the integral as well as not extremely small z (see point 

4) we can see that the integration over ]k I a is concentrated at lk*l z IQ:]. In this kinematical 

region we can replace ~J$(pU, ]k*], IQ:]) by pUD,“(pU, ]@], IQ;]) and define the Pomeron 
structure function as follows ‘: 

FG 
DP’ (;> IQ’L IGil) = 

N lQ;l l & 
/ J 

‘Q2’WJ4(lW 
LZ B" 131 k4 4Km 

[m34W (+IQ*~, 1~21) + 

)I 
We have already neglected the G Hr.contribution. The main property of eq. (2.36) is the 
fact that the newdefined function only depends on the ratio k and not on pU itself. Again 

we transform the integral equation above into a differential equation I”: 

i?hi(U)qP 
(;, lQ21, IGil) = 

= aa\;” I;$ ~~!4u’(~,lQ21,1~~l) + %b)Gp (+lQ*l,l~~l)] -t 

+ $- 4(lQ’l) @; ” ; 
( ) Q2 aG:,:l) A 

(2.37) 

9Here we do not apply any of the standard definitions found in the literature [?, ?]. The definitions there 
were motivated phenomenologically with certain assumption on the Pomeron structure function. In our case 
we are just interested in the point how to simplify the diffractive dissociation structure function in order to 
apply the GLAP equation. 

loWe set D; = qp and 0; = GP. 
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a 
aIn 

GP 
( 

;, IQ’I, a 
) 

= 

= Ba’$f” j; $ bf(d 4’ (+ IQ’I, IGil) + %) GP (+ lQ2’, IQ:,)] t 

+ z 4(IQ’I) aE 
Q2 c$(lQ:l) 

At first sight eq. (2.37) is still not the same as the GLAP equation that has been used in ref. 
[?I. However, within our accuracy we should neglect the last term in eq. (2.37) at large ]&‘I. 
The above equation then reduces to the GLAP equation with the specific initial conditions: 

qp ;, 
i 

lQ:lm ) = QP (jymzl) = @$ (;) ; 
(2.38) 

GP = @F (;) 

It should be stressed that we do not need the energy sum rules 

J ( o1 dn q’(z, l&*1, I@$ t GPb, lQ21, l~il,) = 1 (2.39) 

for the normalization of the Pomeron structure function. In our case this is done by equation 
(2.36) through the cutoff IQ:/. We finally have reduced the problem of evaluating the cross 
section for diffractive dissociation to the solution of the GLAP equation (2.37) with the 
initial condition (2.38) and its normalization due to eq. (2.36). The variables of the evolution 
procedure are z and 1Q21. 

The question is, now, what can we do if we are interested in the total cross section of 
diffractive dissociation including the region of integration over I kfl below Igil. There we have 
to assume something about the contribution of jet production at small Iktl. We think that 
the best we can do is to move to the “soft” Pomeron phenomenology with the experimental 
value Gsp as soon as lktl becomes smaller than 1GeV. At lktl N &,, we can match our ‘l&d” 
formulas with the phenomenological ones and extract the value of the natural cutoff Q,, in 
eq. (2.36). 

We can draw the conclusion that in the very rough approach where we neglect the con- 
tribution proportional to &I it is possible to introduce the deep inelastic structure function 

of the Pomeron with well defined intial conditions (2.38). But, at least when E reaches 1 we 

cannot believe in these initial conditions, since then the typical value of /k:I in the master 
equation (2.24) approaches 1Q’l. In this case the eq. (2.37) gives an idea what change we 
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need to introduce for the structure function of the Pomeron. What happens when /‘3% comes 
very close to 0 will be discussed below. 

6. Experimental suggestion: 

We would like to note that we can introduce the sum 

&z, IQ”) = h(z, IQ”‘) + / ~G;G(I~:l)~* F,DD (;A IQ’I) @&fI (2.40) 

where the second term is the integrated contribution to the diffractive dissociation structure 
function. 

This sum has a very simple and remarkable property, namely, there are no screening 

corrections if the AGK-cutting rules are correct. It means that FaE obeys only the usual 
GLAP equation without any nonlinear term while each contribution separately has these 
screening corrections. 

In some sense the experimental study of F, DD in comparison with Fz can give us the value 
of the screening corrections as well as a direct check of the AGK-cutting rules. 

7. Transverse momentum distribution of the slowest jet in the diffractive dissociation: 

As was noted in ref. [?] we have a different distribution over the transverse momentum 
of the slowest jet in the diffractive dissociation (k, in fig. 2.2) in comparison with the 
distribution in a typical inelastical event in the deep inelastic scattering. It is easy to see 
directly from eq. (2.24) that 

/3% daDD 

&A WI dlkfl ,uT,<,Q;, = 

= IG;G(I~:I)~2 F 4T;z- a21/;:l) ; j- $; (1 _ *) 

[@:iz)D: (;>lQ21,~) + @;k: (j$Q’,,E) t (2.41) 

+ & F j- $ I$’ yas((’ ;i)lq”) ?$(z’)D; (&, ‘Q21, lqzl)] 

,.:~>lQ;l)]* 

The main factor here is $ while the corresponding distribution in the deep inelastic scattering 

is proportional to A. So, we see that in diffractive dissociation the typical transverse 

momentum is much smaller than in the inelastic cross section of deep inelastic scattering 
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and the dependence on the lower cutoff is much stronger in diffractive dissociation than in 
deep inelastic scattering. 

8. Kinematical region pU + 0 and z + 0: 

Taking our master equation (2.24) g a ain we would like to examine the region of small 
zn ( zn is the Bjorken variable for which we use the notation z) where /& also goes to zero. 

We claim that in this region we leave the lower cutoff @iI and integrate over the complete 
region of I kZI. This has already been discussed in the GLR-paper [?I, but here we are going 
to stress some particular features of diffractive dissociation (see also [?I). 

In order to illustrate all problems and properties of our process let us use the double log 
asymptotics for all our structure functions in eq. (2.24), namely 

42, IQ’I, lk”l) - -p( \/16N(lq} (2.42) 

& is defined as i In In (9). With this asymptotic expression the integral in (2.24) looks as 
follows: 

/ 
” d& exp -2b& - ebik + 

bo 
(2.43) 

The integration over z has no influence on the double log asymptotics and we can omit it 
here. Looking at eq. (2.43) we immediately see that there is a saddle point in the integration 
over .&. Its value Ei can be found from the equation: 

“b(:+i\j16~~~~~-~16rY~~~~~~ = 0 

There is one region 

where we can easily find the solution of eq. (2.44), namely 

(,, = 41n (i) 6Q + In (k) lQo 
k 

41n (A) + In (+) 
(2.46) 

(2.45) 

Inserting this result in eq. (2.45) yields the kinematical region where eq. (2.46) is justified. 

41n ($) (4 t In (5) tQo << Lln 
4ln(+-) +1,(e) 2b 1 (2.47) 
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This kinematical region corresponds to a missing mass squared Mj. which is much larger 
than IQ21 and a large value of lk21 which is close to l&*1. Th e suppression with increasing 

I k21 in this case is due to the structure function of the upper ladder and not due to the factor 

&. We have the compensation between the two lower ladders and the upper ladder. The 
opposite kinematical region is: 

4N h(e) [ 1 JFEQ-( 
ko 

With this condition we get the following equation for [,“: 

t,” t & ln[b(ti? - EQ,)I - h In [yln(jJ] = 0 

When we further restrict the region for tz being 

we come to the solution 

(2.49) 

(2.50) 

(2.51) 

To be consistent in our estimations we have to fullfill the relation 

lnln (5) > lnln (-jj +ln (a& -21n [y ln (jj]) (2.52) 

In the region that we are discussing now the missing mass Mx is, on the one hand side, 

much smaller than fi, on the other hand side, not extremely large compared to m. In 

this case the two lower ladder compensate the factor &. 

Both solutions for [i depend on ,&, i.e. the missing mass Mx, and as long as flU is small 

enough we do not need a lower cutoff like l@j for lk’\. I.e. the cross section of diffractive 

dissociation does not depend on lQ:l. 

The first solution [z in eq. (2.46) d oes not allow the definition of a Pomeron structure 

function in the sense of eq. (2.36) b ecause Ez depends on and \&*I. The second saddle point 
solution (2.51), however, only depends on /3” and provides us with a new scale jkzl which 
serves as starting point for our evolution equation (2.37). Eq. (2.51) leads to the following 
expression for lkij: 

lkij = A2 exp [I=] (2.53) 
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As before qp and GP denote the solution of the evolution equation (2.37) together with the 
initial condition (2.38). The normalization has to be changed including the width of the 
saddle now. The diffractive dissociation structure function turns out to be: 

qDD(;.a.lQ”l) = 8’(~JLlQ”l) II/ “21ni;f;I, b21n(!$)[. 

n 
S ~G~G(141)~2441 a.(‘ko”l) 

lk:’ 16 [PJ’,G(Pw I#‘> IQ:l,]” ; 
(2.54) 

GDD($t,lQ21) = Gp(~1(sy~iQ2i) a( ‘+2~n~~~~I~ b21n($!)J” 

h 
S /G;G(/~21)~24~:l a,(lk:l) 

IkYl 16 [LW,“(Pw ‘4% lQ;l,]’ 

The equation above reveals the strong dependence on the proton structure function DF 
whereas the evolution from Ikil to ]Q2] t urns out to be a small correction which we even 
neglected while evaluating the saddle point (passing from eq. (2.44) to eq. (2.51)). 

So far we assumed the simple double leading log asymptotics for the proton structure 
function which has to be modified by taking into account shadowing (screening) corrections. 
These corrections correspond to diagrams shown in fig. 2.4 which were summed by the 
nonlinear evolution equation (GLR-equation, see ref. [?, ?]). Since the GLR-equation only 
gives the possibility to calculate the structure function in the region where the shadowing 
corrections are still small, we need for very small /3% some additional hypothesis, the so called 
parton density saturation hypothesis. 

BuD,“(Pw Ik’l, IQ;11 = 
a$& for Ik’l < dW 
a& for lkzl > qi(p ) Ik I 21 

(2.55) 

where qi(&) is equal to (see [?, ?]) 

q~(a)=Q~tA’exp{3.56~~) 
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In the framework of the saturation hypothesis we can calculate the total cross-section of 
diffractive dissociation. It is easy to see that using eq. (2.55) the integral over lk21 in eq. 
(2.24) is convergent and takes the form r1 

/3u daDD 

dA +;I (‘*’ + xp’)/,,,t,<,Q;, = 
= IG;G(IUfI)IZ F”“;&+- ;& j; t?F a~~q~~sy)) . (2.57) 

t [B%P; (;, lQ21,dMA) t”‘%‘: (2, lQ21, &A,)] 

In this kinematical region we can introduce the structure function of the Pomeron using eq. 
(2.36) with i$ = qi(bu), For this structure function again we can apply the usual GLAP 
evolution equation with the initial condition (2.38). 

At the end of this section we have to discuss another type of corrections. These are 
emissions below the cell in which we have dpJ. mtegration (see fig. 2.5). This extra con- 
tribution is similar to GHr that we have disE&ed under point 2. It is not suppressed by 
any power of (Y, [?, ?] , but it turns out [?] that due to the colour structure of QCD the 

emission of gluons below the cell with ?$l integration are proportional to &. This factor 
is numerical small and we do not take into account the corresponding contribution. In ref. 
[?] such contributions were investigated in detail and it was shown that we have to multiply 
our answer (eq. 2.24) by a factor 

t (2.58) 

with 6 x 10d2 for N = 3. One can directly conclude from equation (2.58) that such emission 

give negligible contribution for any reasonable value of In ($-). 

3 Photon diffractive dissociation at Born-level: 

This section is devoted to the technical details of the calculation of the diffractive dissociation 
cross section at Born- level. The next section will include the generalization to higher order 
of perturbation theory. 

Due to the fact that the photon couples to quarks only (and not to gluons) the minimal 
configuration of the diffractive dissociation process is the’dissociation into two quark-jets 

“We have neglected the GHT contribution because it is beyond our approach here. 
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(quark and anti- quark) (fig 3.1). The next step towards the complete description of photon 
diffractive dissociation is the inclusion of one gluon-jet (fig. 3.7). These two cases serve as 
starting point for the generalization. 

3.1 Photon diffractive dissociation into two jets: 

Since photon diffractive dissociation is part of the general deep inelastic scattering, another 
name for our process could be diffractive deep inelastic scattering. New in the case of 
diffractive dissociation is the more exclusive final state which contains the proton only slightly 
scattered. The rest of the particles in the final state (here quark and anti-quark) take the 
quantum numbers of the photon. The quarks and the proton are well separated in rapidity 
provided that the missing mass Mx (invariant mass of the two quarks) is much smaller than 
the c.m.s.-energy &. Naturally, ]&*I < Mi r2 so that all our discussion is restricted to 
a small x-Bjorken ( zg E z in our notation) In this region the leading contribution to 
the cross-section comes from the Pomeron-exchange. At Born-level and in the framework of 
QCD the Pomeron is represented by a pair of gluons in the colour singlet state. 

Fig. 3.1, now, shows all the diagrams which have to be taken into account. Gauge 
invariance requires a set of diagrams which includes all permutations of the photon and the 
two gluon lines. Diagrams with crossed gluon lines were not explicitly shown in fig. 3.1, 
instead each single diagram represents the sum of two diagrams with and without crossed 
gluon lines. We do this because summing the crossed and uncrossed diagram (s-channel and 
u-channel contribution) results in the approximate cancellation of the real part of these two 
diagrams. Only the imaginary part is left. 

The momentum u which is transferred along the two gluons was already introduced in 
section 2. For simplicity we set u2 which is the momentum transfer 1 equal to zero. This 
assumption is realistic, since the proton’s form factor decreases strongly with increasing t. 
In the following discussion we further assume that the two gluons couple to a quark instead 
of the proton in the lower part of the diagram. The scattering of the Pomeron on the proton 
is given in appendix A. 

Before we start the explicit calculation we should mention that a similar calculation has 
been done by Ryskin [?I. While checking his result we found some mistake and present 
here the correct answer. Nikolaev and Zakharov [?I, too, have calculated this process but 
used a different technique. It is possible to transform their result into ours. The main 
difference in the technique is that we apply the Leading Log Approximation which allows 
the generalization to higher order perturbation theory which we are interested in. 

Since our approach is based on the Leading Log Approach we concentrate on the region 

1*1Q21 could be interpreted as the mass of the incoming photon 
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of integration over Ilfl (see fig. 3.1) which yields some log in Igil. This requires the strong 
ordering of the tranverse momenta (for notation see fig. 3.1): 

IQ21 > lkfl >> IlfI >> Iu:I x 0 
The or component of the momentum 6 (we use Sudakov variables: 1 = or&’ + /3lp + It) is 
fixed by taking the pole of the propagator p - u - I, whereas a, and ok are fixed using 
the mass-shell condition of the final states with the momenta p - u and k - U. The third 
mass-shell condition (momentum k + &) serves to fix Pk. 

We, now, come back to the point where we need the crossing of the gluons (crossing 
in the t-channel, fig. 3.2). As we already mentioned taking the sum of the crossed and 
uncrossed diagram is equivalent to the sum of the s-channel and u-channel contribution. 
Due to the positive signature of our diagrams (colour singlet state) we know that the real 

part cancels out, at least in the leading order neglecting terms proportional to q. The 
remaining imaginary part of each diagram in fig. 3.1 is given by the imaginary part of the 
propagator k - I- u and k + Q + 1 respectively. In order to evaluate this imaginary part we 
just have to substitute a S-function for each propagator. It is important to remark that each 
&function is accompanied by one ?r and not 2x as usually appears while taking the pole of 
some propagator. We can say that due to the smallness of the momentum u the amplitude 
is approximately equal to the half of its discontinuity. 

We have already mentioned that in our approach we set t equal to zero. It follows that 
ut and a, are zero, too. This means that the momentum u has only one component along 
p, u = pup. @% can be expressed in terms of the missing mass Mx and IQ’]: 

JG = (Q+u)’ (3.2) 

* A = M; t IQ21 
3 

We now give a table of all kinematical relations which we have discussed so far: 

12 (y, = t; 
s 

% = (p” $& ; 

a) Bl = 
1: - Vt, ki) ; 

b) LA = 0 ; 
%S 

Pk = 2; 

B” = qtx; 
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u2 = u: = t = 0. 

For pi we have two different results: eq. a) belongs to diagram 3.1.a and 3.1.~ and eq. b) 
to diagram 3.1.b and 3.1.d. From table (3.3) t i is clear together with eq. (3.1) that all 
a-variables are strongly ordered: 

1 >> lcul > Ia,1 >> Ia”1 = 0 (3.4) 

We would like to illustrate this in the case of ILY~[ and lot/. There are two reasons why these 
two variables are strongly ordered. The first is that we assumed lkzl > I6,‘l and the second 

one is the smallness of z and pu: pu - zr = + < 1. So, even if I, is not much smaller than 
k,, ai is small compared to cxk and we are allowed to neglect it. This neglection we have 
already used while calculating pi in table (3.3). 

After having clarified the kinematical situation we proceed with the calculation of the 
lower part of the diagrams in fig. 3.1. In each diagram the pair of gluons is radiated by a 
very fast moving quark r3. The gluons are sufficiently soft (F < 1) and the emission could 
be understood as virtual Bremsstrahlung. In the language of Feynman rules this means that 
we can use the eikonal approximation. For example: 

u (p - u)-y” (lj - i - 2) y u(p) N 4 p”pP u(p)u(p) (3.5) 

All other contributions turn to be beyond the leading order that we are interested in. We see 
that the gluons are polarized along p. So far we have not specified the gauge. If we assumed 
the Feynman gauge, the polarization vector p” of each gluon would be directly transmitted 
to the top of the diagram. With this pvector we could go on calculating the upper fermion- 
line, but instead we prefer to use a trick which will help us to reduce the number of diagrams 
which actually have to be calculated. Fig. 3.3 shows that we can isolate out of the diagrams 
3.1.a and 3.1.~ a gauge invariant substructure. Gauge invariance is guaranteed because the 
quark with the momentum Ic - 1 -u is on mass-shell ((lc - I- u)’ = 0). Let us call the upper 
part of fig. 3.3, where the gluon is coupled to, MP. Then 

(I+u),MP = 0 
1 

* p,MP = - tp 
Dl + Pu 

MP 

We neglected 011 as well as ut. Eq. (3.6) is generally known as Ward identity. In appendix B.l 
we show how this result is reached by summing explicitly the two diagrams in fig. 3.3. Using 
the polarization -& instead of p” allows to neglect the diagram in fig. 3.3.b because its 

contribution is proportional to w. 

%e work in the Breit-frame 
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A further possibility usually used to calculate the Altarelli- Parisi splitting function is 
the use of the light cone gauge with Q’ as gauge vector (A. Q’ = 0). In this gauge the 
propagator looks as follows (k is any vector): 

-W(k) 

k2 (3.7) 

with 
d’“(k) = ,y _ ""Q;;',4;'""" (34 

MultipBlying d’“(k) by p, directly yields -1ok c where we neglected CX~&“. For the right gluon 
in the diagrams 3.1 which carries the momentum I we keep p-polarization. 

We finally come to the conclusion that we only need to evaluate the diagrams in fig. 3.1.a 
and 3.l.b, whereas those in 3.1.~ and 3.1.d do not contribute provided we use as polarization 
vector for the left gluon -&. u 

We go on with the evaluation of the upper fermion line in fig. 3.1.a. and 3.1.b. 

i 
-fi(k + Q) it, ; @, ; p 

u 
(i - i - t?) 6 .(u - k) 2 

u(k + Q) 6 (a + Q + i) it, (;$ p1 ; pu u(u- k) ; 

(3.9) 

Since we consider only transverse polarized photons, we introduced in eq. (3.9) -yt,, instead 
of 7,, for the photon vertex. The factor & and 5 in eq. (3.9) is the result of integrating 
the h-functions which have to be introduced in order to calculate the imaginary part of the 
amplitude as explained above. 

Both expressions in eq. (3.9) have to be expanded to the order 8, for we would like to 

extract the log over If. The details how to proceed is given in appendix B.l. The result for 
both expressions in eq. (3.9) is 

?rl: 
274 - ~1 a(k + Q) it, 4~ - k) puk,” 

The variable z is defined as z = k = 2. 

Next, we would like to evaluate the colour coefficient of the diagrams in fig. 3.1. This 
is easy to do, for the pair of gluons is assumed to make up a colour singlet state. Fig. 3.4 
shows how this looks graphically. We only have to deal with a gluon loop which is attached 
to a fermion line as shown in fig. 3.5. The result is simply: 
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We would like to conclude this subsection with the complete expression for the cross 
section of photon diffractive dissociation at Born-level (see fig. 3.6): 

Pu do 2 
= T”“;;;“” 

/ 
IQ21 dlk*l a* 8 

dA dt t=,, 
--? 
E 

----‘(l-z) (4cF i;,‘$$ (3.12) 
k4 16N 

We remind the reader that a factor i is due to averaging over the polarizations of the incoming 
quark and transverse photon. IQ,,1 ’ is as usual the initial virtuality of the quark in the proton. 

We already introduced the value IQ:\ as lower cutoff for the transverse momentum squared 
kf in section 2. It should be large enough first of all to justify perturbative QCD and second 

to give room for some evolution from IQ:1 to [@I. Th e relation between the virtuality lk*l 
and the transverse momentum squared Ik,‘l is given by IkfI = (1 - z)lk21. 

As was noted before, expression (3.12) could be derived from the result of Nikolaev and 
Zakharov [?] by passing to the Leading Log Approximation. Nikolaev and Zakharov did not 

introduce something like Gi but used instead of that the quark mass m, as lower cutoff. I4 
As can be seen from eq. (3.12) for large masses Mx we have a spectrum of the type: 

du Q4 
dt dM; = I@JMf: 

(3.13) 

This equation shows that our leading log result is strongly suppressed at large Mx. In this 
region the main contribution comes from a pointlike Pomeron, and the formular of Nikolaev 
and Zakharov gives the correct answer: 

(3.14) 

One would expect such a type of spectrum, for the Pomeron acts as a pointlike particle 
similar to a gluon or photon and we are left with only one quark exchange in the region of 
the t-channel where the two quark-jets are produced (see for example fig. 3.6). We would 
like to stress that eq. (3.14) d oes not contradict our result, it is just outside the region where 
the Leading Log Approximation is applicable. 

3.2 Photon diffractive dissociation into three jets: 

On the way to some complete expression for the cross section of diffractive dissociation we 
have to investigate the case when besides the two quark jets one additional gluon jet is 
emitted. 

“‘We neglect all quark masses. 
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Before we look at all the diagrams which may contribute we have to specify in which 
gauge we would like to work. In contrast to Ryskin [?] we use the light cone gauge with Q 
as gauge vector ((A, Q’) = 0). We think that in this gauge it is more convenient to calculate 
the diagrams in the kinematical region where pU could be of the same order as I. This gauge 
can also be used to derive the Altarelli-Parisi splitting functions in a similar way as was done 
by DDT [?I. 

We have already introduced the corresponding propagator (see (3.7) and (3.8)) which is 

-idp”(T) 
7-Z 

withOB 

d”“(r) = ,$‘” - 
I-“&‘” + Q’“r” 

(T?QI) 
(3.16) 

r can be any momentum. Apart from the propagator we need the polarization vector of a 
real gluon, i.e. a gluon on mass-shell: 

E”(T) = 6$‘(r) - (‘?‘$:;” Q’” 
T, 

et(r) denotes a vector in the transverse momentum plane which has the following properties: 

Since the transverse plane is two-dimensional we only need two basic polarization vectors. 
When we sum over the polarizations as in eq. (3.18) we actually sum over these basic 
polarization vectors. In practice we only need the second relation in (3.18). 

The kinematical situation is similar to that in the previous subsection. We have strong 
ordering in the transverse momenta and the (Y- components: 

IQ”1 >> /qtI > lkfl >> /[,“I >> Iu:I = 0 ; 
1 >> loI >> la!J >> ]a,] > ]oul = 0 

(3.19) 

As lower cutoff for Ik:I we will assume IQ:], whereas for ]lf] we have the usual IQ;]. The 
mass-shell conditions (see fig. 3.7) including the poles of the propagator p - l - u , k - l-u 
as well as q - I - u lead to the following table of kinematical relations: 

cYy = 
(pk ‘&,a ’ 
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ok = (p* ?Pk). ; 
12 

Q, = J-. 
s ’ 
2 

a, = 3. = 0; 
s 

P, = 5; 

a) PI = 
6,” - 2(L kt) ; b) 81 = 0 ; QkS 

(3.20) 

u2 = 112 t = t=o. 

Here again we used the fact that the imaginary part of our diagrams dominate over the real 
part. The variable pk, now, has to be integrated. It ranges from /‘& down to z. 

3.2.1 Higher twist $: 

In this part of the current subsection we restrict ourselves to the case where we have a 
logarithmic integration over lq2j instead of jk’l. The latter case which we usually call the ‘next 
to leading order’ will be investigated afterwards, The restriction just mentioned demands 
that each amplitude has to be proportional to $. The first order qt in the numerator 

originates from the gluon-quark vertex and the denominator $ from the quark propagator. 

In analogy to the subsection before we are going to extract the logarithmic contribution over 
1: from all diagrams. 

The variety of diagrams which may contribute is quite large, now. But the specific choice 
of the gauge and the fact that we are only interested in terms proportional to I: reduce their 
number. The gauge that we chose allows to neglect diagrams with real gluon emission from 
their top, i.e. emission from the upper fermion line, whereas emission from the bottom gives 
some contribution. The light cone gauge with p as gauge vector ((p, A) = 0) has the opposite 
effect (see ref. [?I). There, the emission from the bottom can be neglected. 

We conclude that it is enough to calculate the set of diagrams given in fig. 3.7 and 3.8. 
One example of diagrams which do not contribute is shown in fig. 3.9. It yields a contribution 

which is proportional to 8. The details of the calculation we leave for the appendix and 

present here only the final answer and some general remarks. 

We divided up the complete set of diagrams into two goups, fig. 3.7 and 3.8. The 
difference between them is, roughly speaking, the fact that in fig. 3.7 we have an interaction 

26 



in the final state between the gluon and the bottom quark whereas in fig. 3.8 the common 
property is the interaction between the quark pair at the top and the bottom quark. One 
could object that the diagram in fig. 3.7.b does not perfectly fit into this group but the final 
answer suggests to put it there because, then, the result of all diagrams in fig. 3.7 is the 
same as in fig. 3.8. 

The polarization vector of all the gluons which are emitted from the bottom line are 
aligyd along the momentum p. If we multiply now the vector pP by dP”(I + u) we get 

-L- -PI+& For the second lower t-channel gluon with momentum I it turns out to be more 
convenient to keep the p-polarization. This is possible, since the lines on the right and on 
the left to the point where this gluon is attached are on mass-shell except in diagram 3.7.b. 
The ‘local’ gauge invariance allows us to change the gauge. In diagram 3.7.b we have this 
possibility, too, but now, at the top where the right t-channel gluon couples to the quark 
line. The quarks on both sides of the vertex are on mass-shell again. The numerator of the 
propagator 6 + u - k can be changed from 

Q'"(kt - V‘ 
(PI + pu - Pkh’r Q') 

(3.21) 

to 

(3.22) 

The t-channel gluons on which we focus at the moment (so called Coulomb gluons) have a 
specific property: due to the fact that they couple to two particles on mass-shell their p- 
components turn out to be small, i.e. they are very soft. The smallness of the P-component 
allows us to use the approximate form (3.21) instead of d”‘(6 + u - k). 

Another important property of these soft gluons is the fact that they feel the total charge 
of the quark anti-quark pair and not its substructure. This may be illustrated with the help 
of the following example (see diagram 3.8.a): 

The a,s in the denominator is the residue of the propagator q - I- k in connection with 
the integration over ,B,. The eq. (3.23) only holds if we demand to have a logarithmic 
integration over qt * r5 Taking into account the second quark with a similar approximation 
as in eq. (3.23) the colour of both quarks add up to the colour of the left gluon. The 
approximation which was used in eq. (3.23) we already know from the gluon-emission at the 

ISFor the sake of completeness we should add a minus to eq. (3.23) due to the direction of the fermion 
line (incoming). 
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bottom, it is the eikonal approximation. This type of approximation is intimately related to 
the classical current emission (see [?, ?I). 

The previous discussion and its application gives a great simplification in the calculation 
of all diagrams in fig. 3.7 and 3.8. The total colour structure becomes easy to handle and 
can be reduced to the structure in fig. 3.10. Due to the colour singlet state of the lower 
gluon pair the colour coefficient in fig. 3.7.b is the negative of the colour coefficient in fig. 
3.7.a. The colour coefficient of diagram 3.7.~ and 3.7.d add up to give again the same as in 
diagram 3.7.a and in a similar way all diagrams of fig. 3.8 can be normalized to diagram 
3.7.a. 

The amplitude which finally represents the sum of all diagrams in fig 3.7 and 3.8 is 
proportional to 

N 
-eg: pull N2 _ 1 T; fi(q + Q) ytp $ &(u - k) v(k - q) 

(3.24) 

z is defined as p. The indices a, i and j are the colour indices of the gluon, quark and 
anti-quark. 0ver”the colours of the incoming quark we averaged. 

To complete the discussion we give the cross section of the three jet event (see fig. 3.11) 

A do 
d/L dt t=O 

@g(z) + 0; (&) @f;(z)} (~CF 1;’ $ $3.25) 

and define two Pomeron splitting functions, the first one describes the Pomeron splitting 
into two gluons and the second one the splitting into two quarks: 

@z(z) = N;N: 1 4z(l - z)“(2 + ;,s 

Q;(z) = & 162’(1 - z) 

@g and @ are the usual Altarelli-Parisi splitting functions. The first one stands for the 
production of two quarks by a gluon and the second one stands for the emission of a real 
gluon by a quark. It is easy to see that the square of expression (3.24) leads to the first 
term in the square brackets of expression (3.25). It corresponds to diagram 3.11.~~. The 
integral over z was originally the integral over /?k. The evaluation of the second term in the 
square brackets of (3.25) follows the same strategy as was used before. I.e. extracting terms 
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proportional to 8 leads to the usual Altarelli-Parisi splitting function convoluted with the 
Pomeron splitting function derived in the previous section. 

We have to give a warning at this place. It is not possible to use expression (3.25) to 
make realistic computation on three jet events. This can only be done with the help of 
Monte Carlo simulations. We emphasize that expression (3.25) is only one step on the way 
to a complete expression of diffractive dissociation cross section. 

3.3 Higher twist 5: 

When we speak of ‘higher twist hi’ or ‘5’ we refer to diagram 3.11 for notation and definition. 

Having in mind that I!?1 and 14’1 are strongly ordered it is obvious that the higher twist 
contribution $ is much larger than $. We will see that, indeed, in the case of three jet 
emission we can neglect this contribution, but we have to be careful in the case of the total 
cross section of diffractive dissociation. The total cross section is evaluated with the help of 
the evolution equation as explained in section 2, and we cannot exclude this contribution, 
since it has the same number of leading logs as the higher twist $ contribution. Nevertheless, 
we hope that numerical studies will reveal the smallness of this contribution. 

Unfortunately we cannot calculate the higher twist 5 contribution with the same accu 

racy with respect to the ratio 2 as we did deriving the Pomeron splitting functions. We are 
only able to do this in the Triple Regge Region where /3” is much larger than /$ and I. This 
corresponds to the Double Leading log Approximation (DLA). 

First of all we reduce expression (3.25) to the DLA region by taking the leading singularity 
of the Pomeron splitting function: 

A dg 
d/3” dt t=o I 

WI dlk2l a; 
I$ k4 16 I 

IQ*1 dlqZl a, --. 
llczl lq21 4n 

P”>X 

8N2 
/f dz @g(z) (aC, l;;;‘$ 2 

2 

Ns-1 z 
(3.27) 

In the next step we add the higher twist $ contribution which is proportional to 5 (for 
details see appendix): 

A dg 
dpx dt t=o 

IQ’1 d1k2j a; 
I IZ 

-- /;dr I:‘$$ 
.k4 16 ou 

-g 
1 
z2+(1 -z)’ + 341 -z)(2z-1); ] (4% g+f$ . 
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The first term in square brackets is the explicit representation of the Altarelli-Parisi splitting 
function @. The second term is the modified splitting function which we introduced in 
section 2 as G$. 

If we look at the splitting function 341 - z)(2r - 1) we see that its integral taken over 
the interval from 0 to 1 is zero. This indicates that the coefficient in front of the higher twist 
$ contribution is small. Although this estimation cannot give the final answer we have good 

hope that the higher twist contribution 5 turns out to be numerical negligible. 

4 Generalizbtion to multi jet production and the pro- 
ton structure function: 

Since we are interested in the total cross section of diffractive dissociation, we have to go 
beyond the three jet production and take into account the emission of an arbitrary number of 
jets. Moreover, we have to improve our simple model of the Pomeron just being made up of 
a pair of gluons in the colour singlet state. The second point just mentioned is quickly done, 
for we only need to introduce the gluon structure function D, o by making the substitution: 

J 
VI dll:I a, 

4c.v -- 
IQ:1 IIt” 47r 

+ PuD:(Pu, lk’l, lQ:l, 

As far as the production of jets is concerned the answer is quite simple if only the higher 
twist h contribution dominates. Then we can proceed as in subsection 3.2 and each extra 
emitted gluon or quark results in a logarithmic integration over its transverse momentum 
or virtuality together with the corresponding Altarelli-Parisi splitting function. Taking eq. 
(3.25) we just have to substitute the Altarelli-Parisi splitting function by the parton density 
function, for example @F by DF. This procedure yields 

(4.2) 

[PuDfUL lk’l, I&:1)] 

The generalization of the next to leading order is much more complicated and to solve 
this problem it needs more effort in future time. What we can say is that we can substitute 
the contribution due to a simple quark loop at the top of the diagram 3.11.a, which is 
equivalent to a S-function in the variable z, by the parton density function 0;. Emission 

30 



below the quark loop is of that type which was investigated in ref. [?, ?]. It turns out 
to be a small contribution (see also subsection 2.4.). All that we know about the next to 
leading contribution was derived in the Triple Regge Region. Nevertheless, we included this 
contribution in eq. (3.32) (see eq. (2.24) at the beginning of subsection 2.4.). Anyway, we 
believe that the influence of the next to leading term is small. If not, this term gives, at 
least, a rough impression how the correction looks like. 

5 Conclusions: 

We have discussed the results of the paper in section 2.4, so we do not need to do this again. 
However we would like to repeat once more the main physical outcome from our calculations. 

1. We claim that AGK cutting rules are violated in deep inelastic scattering as soon as 
quarks are involved. This fact we conclude from comparison with the paper of Mueller and 
Qui [?I. In our calculations we see that contributions which are necessary to restore the AGK 
cutting rules are suppressed by a factor of the type zg ln(l/sn). We have not understood the 
physical meaning and the general origin of this important result and consider this problem 
as one of high priority for the future. We propose to calculate all cuts in deep inelastic 
scattering in order to clear up what the real source of the AGK cutting rule violation is, and 
what replaces the AGK cutting rule in deep inelastic processes, 

2. We started to study theoretically the hypothesis of the Pomeron structure function and 
found that we could discuss the process of diffractive dissociation introducing such a function 
only in a limited kinematical region and as a very rough estimation. We cannot support the 
idea that the Pomeron could be viewed as a real particle. 

3. We got a formula for the diffractive dissociation that could be used for a Monte Carlo 
simulation. There we introduced two new functions (Pomeron splitting functions) 

a+(z) = $2(1-z) 

s 

q!(z) = izN: 1 z( 1 - 2)’ ( 2+- 1 ) 2 

which allow to use our formula in the region 

% OS- < s 
s 

(5.1) 

(5.2) 

We hope that this will help to study diffractive dissociation at HERA 
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Appendix: 

A 

In this appendix we would like to come back to the discussion of the AGK-cutting rules and 
calculate the integral (2.31) in order to establish the correspondance between our calculation 
and the calculation of Mueller and Qui [?] for the shadowing correction to the usual evolution 
equation. To reconstruct all normalization factors we prefer to use the analysis which was 
developed in [?I. There was discussed what we actually need here, the interaction of two 
Pomerons with a nucleus, since it is the same model on which the calculations in [?] are 
based. 

The function M(C, V) can be regarded as the cross section of a process where some probe 
is scattered off the nucleus with the momentum transfer u’. The energy transfer us = v is 
small compared to the target mass. If U(Z) is th e e ec ive ‘potential’ of the probe-nucleus ff t’ 
interaction the cross section is given by the familiar formula 

M(ii,u) = T I(fl /d3 ZU(~) ei(a*‘) 1;)1* 6(E, + v - I$) 

where E;,f are the energies of the initial and final state. In our model U(Z) is the sum of 
terms describing the interaction with the individual constituents of the nucleus which are 
located at Zi: 

U(Z) = -& V(Z-- 2;) (A4 
j 

Using the closure property of the final state 

c IfHfl = 1 
f 
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we find 

J 
dv M(tZ, v) = u’(C) A + c (iIei(‘-,rm-‘n’Ii) 1 (A.4) 

m#n 

where v(C) is the Fourier transform of V(Z). We repeat these arguments for the sake of 
completeness. The only important remark that we would like to make is the fact that v 
is proportional to 7 which follows from the definition of (Y,. It should be stressed that 
we used the nonrelativistic normalization of the wave function of the nucleon inside the 
nucleus which gave us the eqs. (A.3) and (A.5) together with the 6- function in eq. (A.l). 
Such a normalization allows to simplify the calculation by utilizing one of the widely spread 
approximations for the nucleus wave function, i.e. the gas approximation (see below). 

We are able to rewrite expression (A.4) through the nuclear ground state function 
p(Z1,. . ,i!~), namely 

(;leiWbm-i”) lz) = 17 d3Z I’p(& , SA)l” ei(‘=-‘“) (A.5) 

In the nuclear-gas approximation 

b(G,. “,~AN’ = l-JP(%;;, (A.6) 
j 

one gets 

where 

mTnW ’ a,s--z”)li) = A(,4 - 1) IF( 

F(G*) = Id% p(Z) ei(ag) 

So we rewrite the integral in eq. (2.31) (section 2) in the following way 

/ dG; M($) = 2 A(A - 1) / d$ IF(Zf)l’ 

II 2 A(A - 1) j q IF(C 

= 8~ A(A - 1) / d.zldzzd’r’t p(s,r;) p(zz, G) 

From (A.9) we get in the case of a black nucleus 

I 
d$ M(ii;) = A* $ 

= A12&z,p 

(A.7) 

(‘4.8) 

(A.9) 

(A.lO) 
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where p is the nucleon density in a nucleus. 

We discuss this normalization in details only to compare with the calculation of Mueller 
and Qui [?I and to drive to a definite conclusion on the AGK-cutting rules. Using eq. (A.lO) 
we get that result which has been discussed under point 3 of subsection 2.4. 

B.1 

In this part of the appendix we present some more details about the calculation in subsection 
3.1 starting with fig. 3.3. By summing the two diagrams in fig. 3.1 we will show in an explicit 
way that the polarization vector pP can be substituted by -&: 

u(k+Q)rr&ilv(k-l-u) + n(k+Q)li(kk++QQ_:_~)~r:“v(k-l-u) (B’l’l) 

The denominator (k+Q-I-u)* is equal to -@r+,&,)s. Each s in thedenominator has to be 
compensated by some s in the numerator. -This can be achieved only by taking the leading 
contribution of the expression ii(rC it .Q) fi (k + Q - 1- 6) which is s ii(X: + Q). Furthermore, 

we can change fi v( k - I - u) into fi v(k - I -IL) after the multiplication and the devision 

by PI + pu. We then see the cancellation of the leading terms in (B.l.l) which results in: 

v(k-1-U) 
This is exactly what we wanted to proof. 

We proceed with equation (3.9) of subsection 3.1 and recall the first expression: 

k it - fi(k + Q) rt” rcz p, + pu (i-i-tq$“(k-u)L 
akS 

(B.1.2) 

In the first step we extract all terms of the order 1: which are the leadingterms. The terms 
of the order I,’ cancel out. It is enough to expand each of the factors k - I - 6 and & to ” 
the first order in It. We should remind here that pr depends on It: 

p 
1 

= 1: - Tt, h) 
o/k.5 

(B.1.4) 

In the expression (i-i- C)j /‘$ does not contribute, since ,C?‘@$ is equal to zero. The factor 
& leads to ke. So we have: ” 

f& ft - fi(k+Qh$p, 2(1tjkt)(i-;1)-jt $v(k-u)L, 1 (B.1.5) 
akS 
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Integration over the azimuth angle of It yields: 

(k-c&f] v(k-u)$. 
u 

(B.1.6) 

Now and for further transformations we frequently use the following identity: 

ii(k + Q) $‘ @ e 0 . (B.1.7) 

This is easily proved by taking the square of the expression (B.1.7): 

Sp{yp(k+Q)yt,Q’ . ..} M 0. (B.1.8) 

Since /& is equal to x we find that $(i + Q)-nP approximately coincides with Q’ where we 

neglect terms proportional to $. Remembering the fact that u = /3,p we can write (B.1.6) 
as: 

_ f!& a(,$ + Q) $’ 
*A^- *A& 

““k;f”,2’,2kt Icp _ f!.& 1 v(k - u) (B.1.9) 
k 

The next simplification comes from the identity &v(k - U) = ruksv(k - u) where, again, we 

make use of the relation u = oUp and p2 = 0. From table 3.3 we get Duo&s = & with 

z = 2, and eq. (B.1.9) can be transformed into: 

nP 2% - --ii(k+Q)+‘ zaks - * v(k--)’ 
6X 1 1 (B.l.lO) 

For further reduction we use the following chain of relations: &v( k - u) = $( k - a&)V( k - 
u) = -$ok$‘v(k - u) = (-oks + ak@fi)v(k - u) , and with the help of eq. (B.1.7) we finally 

find: 

6 22 ii(k + Q) +yf v(k -u) 
II 

(B.l.ll) 

Next, we evaluate the second expression of eq. (3.9): 

 ̂  ̂
L o(k + &I F (i + 0 + j) it, ,;$ p, + pu 4~ - k) ; (B.1.12) 

The s in the denominator can only be compensated by the leading term of ii(k+Q)fi(k+o+i) 
which is sii(k + Q) /3 is zero in this case. The expansion of the propagator gives 

1 

(k :I$ = k* 
W, kt) 

k4 ’ 
(B.1.13) 
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Extracting the terms of second order in I, from the total expression (B.1.12) leads to: 

Lfi(k+Q) Yt, Puk’ 
iit 2(b, W + 12 

k2 f v(u - k) 

Integration over the azimuth angle of It yields: 

a( k + Q) it, (-” ) k: +’ z)(u - k) 

(B.1.14) 

Using the eq. (B.1.7) and the relation kZ = g finally results in the same expression as in 
eq. (B.l.lO). This means that the sum of all diagrams in fig. 3.1, i.e. the final answer of 
this subsection, is equal to expression (B.l.ll) multiplied by two: 

$ 4r ii(k + Q) rt” v(k - u) 
u 

(B.1.16) 

B.2 

In this subsection of the appendix we come back to the calculation of the diagrams in fig. 
3.7 and 3.8. These diagrams describe the process of diffractive dissociation including the 
emission of one gluon. 

We start with diagram 3.7.a and take out the right gluon vertex: 

r,,&l + u - k, -I, k - u) 

= g@v (-21 -u + k), + gvl)(k - u + I), t g,,(l t 2u - 2k)u (B.2.1) 

The gluons to the left with the momentumI $ u - k and to the right with the momentum 
u-k are on mass-shell, so that we can use the polarization vector @‘(l+u - k) and @(u - k) 
for real gluons. From below we have p” as polarization vector. 

@‘(I$ u - k) E+‘(u - k) rPYP p” 

= (p, ~(1 + u - k)) (-21, c(u - k)) + (21,41+ u - k)) (p, t(u - k)) 
- aks (~(1 $ u - k), c(u - k)) . (B.2.2) 

This expression yields: 

2 (It - kt, ct(l+ ~1 - k)) (kt, 4~ - k)) 

@l t b - Pk 
(lt,~(u-k)) t 2(L,4l++k)) pu-pk 

- (YkS(ct(l t 21 - k),tt(u - k)) . (B.2.3) 
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Next, we take the left gluon vertex: 

I?,,,( -I - 11 + k, -k, I + u) 

= guu (--2k + I+ u), + Qvp (I + 21 + k), + g,,(-21- 2u + k)” (B.2.4) 

We will use the polarization vector c”(k) even for an off mass-shell gluon. This is possible, 
since Q’” applied to the upper quark loop does not contribute, at least not at the desired 

order. From below we now have -& “’ 

- 2 ;,‘f(;’ (I + u,t(l+ u - k)) (B.2.5) 

u 

This expression is evaluated to be: 

(tt(k),c*(l+ u - k)) ““;;,Q$- lt’ - 2(&t,(k)) (k -;y$ ‘“,- k)) 
” ” 

_ 2 CL 4 + u - k)) (k,, t(k)) 
bk 

(B.2.6) 

Next, we have to multiply (B.2.6) and (B.2.3) and sum over the polarization of the gluon 
with momentum 6 + u - k : 

4 (It - k dk)) (lt, ct(U _ k)) (It, 4 - % 
PI + /& - Pk PI + A 

+ 4 (l,, Et(k)) (4 - kt)*(h, tt(u - k)) 
(PI + pu - pk)* 

_ 4 (k It - W 

@I + bu - @k 

(kt, 4k)) (It, Et(u _ k)) + 4 (It, tt(k)) (k, 4~ - k)) CL, h) - $1: 

pk 0” - bk Pf + Pu 
(It? h - kd 

+ 4Wt(k))p,+pu-Pk 
(k tt(u - k)) _ 41,’ (k, e(k)) (k,;(: ; k)) 

h - bk 
(B.2.7) 

- 2aks (c,(k), tt(u - k)) ‘“;F;, +I _ 2aks cIt, ctc;, (It - kt:‘du “_ k)) 
u pi + flu - bk 

+ 2aks (““‘(’ - Ic)) (kt, et(k)) 
Pk 

From this expression we would like to extract the second order in &. While we do this we 
have to take into account that /3, depends on &: 

1 
1, 

2(k, k,) 

PI + h, = ,% p,%ks ; 

PI + bk - bk = 

2(k, kt) 

ha ’ pk + (h - pk)‘akS 
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So we get: 

_ 4 (h> 4k)) 
pu _ pk (L-r,- 

<,‘Q))~ ,I 1 /I ./L\\ k,2 
” 

t ‘t 16tT Q(K)) (pu _ pkc,)2 (k4~ - k)) 

+ 4 a,, - 41. 
(LW (k;(k)) (lt,Et(U _ k)) + 4 (lt,E1(k)) (k’;tF jkk)) &+I 

k u u _ 
(Lkt) (4,4U - k) _ 412 (kttdk)) (kt,e(u - k)) 

- 4(l+(“))pU-pk pU-pk f pk pu - Pk 
(B.2.9) 

+ cYI;S (Et(k), Et(U - k)) ; - 4 (et(k), ct(u - k)) ($;)’ 

- 2cUkS (&,Q(k)) (lt;(:,I)) + 4 (lt, et(k)) (kt;(f; k)) j”“;’ 
u k u k u k 

Integration over the azimuth angle of It yields: 

- 2 (lcta dk)) (let, tt(u - k)) I: + 2 (ft(k), ct(u _ k)) 
bk bi - @k MJ - PkY If 

k,2 

+ %S (Et(k),e(U - k)) + - 2 (ct(k),ct(u - k)) ; l; 
u u 

(B.2.10) 

12 
- aka (4kLdu - k)) pu L pk 

In the following equations we would like to include the residue of the a-integration together 
with the corresponding ?r and the factor & originating from the propagator. All this leads 
to an extra factor 

77 1 -- 
Q@ k= 

With z = 2 and /&C&s = k*. we reduce the eq. (B.2.10): 

(B.2.11) 

3 
Puk’ I 

2 (kt, ct(k))(kt> tt(u - k)) 
-a(1 -z) k2 

$ z $f$ (Et(k), ct(u - k))} (B.2.12) 

The next diagrams which we will calculate are those in fig. 3.7.~ and 3.7.d. The right 
gluon vertex is the same as in fig. 3.7.a. Instead of the left gluon vertex we now have: 

_ (kt, e(k) (%P, e(l+ 1~ - k)) I2 = 2 (4 - h, +(I+ u - k)) l; (k,, e(k)) 
bk 

t 
(It - k)2 bk . @kS 

(B.2.13) 

The oks comes from the propagator at the bottom line. In order to make expression (B.2.13) 
comparable with the diagram 3.7.a we multiplied by It. Later on we will devide all contri- 
butions by 1: which corresponds to the the two propagators with momentum 1$ u and I in 
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diagram 3.7.~~ In the further procedure we multiply expression (B.2.13) by (B.2.3) and sum 
over the polarization as before. Since expression (B.2.13) is already of second order in I, we 
only need to take the third term in eq. (B.2.3). The result is: 

2 (kttt(k)) aks lf (kfl dU - k)) 
bk k,2 

(B.2.14) 

After multiplication by the factor (B.2.11) we see that this result cancels the first term in 
expression (B.2.12). Indeed, taking into account diagram 3.7.d the colour coefficient adds 
up to give the same as in diagram 3.7.~~. So we are left with 

nl: 2 3 (et(k), c,(u - k)) 
/3.,kz 1-z 

(B.2.15) 

The last diagram in the first group is the one in fig. 3.7.b. We have already discussed in 
subsection 3.2 that the quark pair at the top of the diagram acts as a classical current with 
regard to the soft gluon with momentum l+u- k One conclusion was that the P-component 
equals zero. So we have: 

,% + ,% = Pk . (B.2.16) 

The gluon vertex is the same as in expression (B.2.1), but from the top we now have & 

and from the bottom -x: 

r,,,(l+21-k,--,k--)EP(U-k) = -(/3k-pu+pl) (‘t’ft(;t- k)) (B.2.17) 

Taking into account (B.2.16) we find the simple result: 

- ~&,G(u - k)) (B.2.18) 

The left lower t-channel gluon which carries the momentum I + u gives a contribution of 
the type: 

(It, dk)) _ (L,4k)) - 
bl + t% - - bk 

(B.2.19) 

The denominator (I+ u - k)* corresponding to the right upper t-channel gluon simply yields 
(kt - &)‘. Together with (B.2.18) and (B.2.19) the final integration over the azimuth angle 
of I, leads to 

& z(l : z) (4kL 4u - kl) 

The residue of the p,-integration was canceled out by the emission vertex of the soft gluon 
with momentum 1+ u - k i6. We only keep the ?r which has not been taken into account 

‘stypical for classical current emission 
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yet. Finally we have to be aware of the opposite sign with respect to diagram 3.7.~~ which 
is due to colour. 

We can now write down the final expression for the total sum of all diagrams in fig. 3.7: 

& 3 - 2.2 1 

Ak2 %1-z- z(1 - .z) (4k), 4~ - k)) 

= -$ (I -z) (z + 5) (ct(k),tt(u - k)) 
u 

Our next task is the calculation of the diagrams in fig. 3.8. The gluon vertex in diagram 
3.8~ is: 

lTpJ--l - k, I + u, k - u) 

= g,,v (-21- u t k), + gup (k - u $ l), + g,,(l+ 2u - 2k), (B.2.22) 

The procedure is similar to that before in the case of diagram 3.7~. For the gluon with 
momentum I + k we use the polarization vector @‘(I + k) From below we have as usual 
-A, and we apply the polarization vector cP(u - k) which corresponds to the emitted 
real gluon. 

@‘(I+ k) $ 
i ) - @, + pu rw @(u - k) 

(k, ct(l t k)) (It, 4~ - k)) = - 
PI + A 

2(1 t u, c(u - k)) + 2 (I t 21, c(l t k)) 
PI t A 

+ (E(I + k),t(u - k)) lf ;,T’;; “) (B.2.23) 
” 

Further evaluation gives 

- 2(!t, ct(l + k)) ““‘;(“j ‘)) _ 2 (it, k,) (It + ;-J$ + k)) 
u k I k 

+ (et(i t k),tt(u - k)) lf 5,:‘;; kt) (B.2.24) 
u 

In all diagrams of fig. 3.8 we can set /3, equal to zero. Instead of & we now have to 
expand the propagator 1$ k : 

(l:k)? = 
1 1 2(L, kt) 

l:+2(l,,k,)+k2 = k* k4 ’ 
(B.2.25) 
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After combinig this equation with expression (B.2.24) and extracting all terms of second 
order in It we get: 

2 (It,++ k))2(Lkt) (kt,du - k)) _ 2 (lt,~t(u - k)) (lt,tt(l + k)) 

+ 2 (It, G(U ‘i)) 2(/t, k,) (let!,; tk)) 
k4 bk 

t (~t(l + :;, tt(u - k)) ; 
A k2 t 

(B.2.26) 

_ 2 (46 + k), tt(u - k)) 2(L kJ2 
k4 A 

We still have to integrate over the azimuth angle of It which results in: 

?rl: 2 (kt, ct(l t k)) (kt, 4u - k)) _ 
L&k2 z(1 - z) k2 

(l-.)(d) (ct(l+k),ct(-k)) 
1 

(B.2.27) 
where we included a * coming along with the PI-integration. 

We now can already suspect what happens with the first term in eq. (B.2.27), if we add 
the diagrams 3.8.b and 3.8.~. It is canceled. The proof is quite easy to do. From diagram 
3.8.b we have 

_ (6 + kt, 4l+ k)) 2(p, t(, _ k)) It” r - 
PI + pk aks (6 t k)* 

which gives: 
d 

- Es z(l”.) 
(kt, ~(2 t k)) (k,, tt(u - k)) 

k2 

(B.2.28) 

Diagram 3.8.~ yields the same result, but the colour coefficient is different. However, diagram 
3.8.b and 3.8.~ sum up to give the same coefficient as in diagram 3.8.a. The complete answer 
for all diagrams in fig. 3.8 is: 

- $ (1 -2) (2 t 5) (ct(l t k),t,(u - k)) 
u 

Expression (B.2.30) and (B.2.21) can be viewed as identical, although they contain two 
different vectors ct(l + k) and t,(k) We introduced these vectors for technical reasons. 
To get rid of them we have to be aware that in the total amplitude there is a second pair 
of adjoint vectors er(l + k) and e;(k) which transforms both of them into the projector 
on the vector component p after summation over the polarization. So we can add up both 
expressions originating from fig. 3.7 and 3.8 into one: 

- $ 2 (1 - z) (2 t ;) (~(l t k), Q(U - k)) 
u 

(B.2.31) 
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We should mention that a more careful anlysis shows that the sign due to the soft emitted 
gluon is compensated by the total colour coefficient in fig. 3.8, so that the sum of diagrams 
in fig. 3.7 and 3.8 have the same sign and do not cancel out. 

We conclude this subsection with one example of diagrams (see fig. 3.9) which do not 
contribute. It is easy to check that this diagram is of third order in It, so beyond the Leading 
Log Approximation. 

B.3 

This subsection deals with the calculation of the higher twist ‘$’ contribution. In order to 
manage the calculation in this case we have to restrict ourselves to the Double leading Log 
Approximation. This restriction goes along with the strong ordering of ,% and pk (Triple 
Regge Region). 

pu >> ok 2 & = + (B.3.1) 

The strategy now is to keep all terms proportional to 1: as usual and in addition to keep 
only those terms with the leading singularity in pk. 

The diagrams which we need to consider are presented in fig. 3.12. Strictly speaking we 
already considered these diagrams in fig. 3.7 and 3.8, but we would like to start from the 
begining, now, using a slightly different technique. 

The main point is to handle the transverse momenta kt and 17~ on the same level, although 
we still assume strong ordering: 

1% B lktl (B.3.2) 

First of all we concentrate on the gluon vertex of diagram 3.12.a and 3.12.b (see diagram 
3.13). What we have to do is to extract from expression (B.2.24) and (B.2.28) the leading 
singularity in PI $ /& : 

- 2 (It ::k,r 
(lt, 4~ - k)) + CC, Et(u - k)) 1 (It + k,)” 

I; k: PI t @k 
(B.3.3) 

The above expression already contains the propagator &. As we will show below it is 
enough to use the following much simpler expression for further calculation: 

_ 2 &> Q(u - k)) (It t k,)” 
k: hi + Pk 

(B.3.4) 

In order to proof this we expand the first part of expression (B.3.3) (without *,: 

_ 2 (bEdU - k)) _ 2 (It, Wt,du - k)) t Ef(k,,e,(u - k)) 
Ic: lc,4 1 k,4 

(B.3.5) 
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It is easy to see that the second and third term cancel out after integration over the azimuth 
angle of I,. 

pt is fixed in the usual way by taking the imaginary part of the amplitude, i.e. in the 
case of diagram 3.12.a (q - k - 1)’ is set to zero. It follows that /3, has the value: 

@, = _ (%,qt - kd 
W 

The factor & has the expansion: 

1 =1 1+ 
( 

(X,qt -k) 

PI + pk @k pk%S 

We can now go on with the evaluation of the fermionic part of the diagram: 

(B.3.6) 

(B.3.7) 

_ ,(L+--1) u(qtQ)7 1 h-k& A - 
kT tcx q2 pl + pk (q - k - f)i v(k - 4) " 

akS 
(B.3.8) 

An important consequence due to DLApproximation is the possibility to neglect (Y&s. Using 
the by now familiar tricks we come to 

_ 2 &,G(u - k)) u(q + &I lit~ 

k,2 
v(k -q) ST 

(B.3.9) 
Further manipulation and the final integration over the azimuth angle of 1, gives: 

KC - Pkkt ‘dq + Q) 
@- Lt 
- 2,(u - k) v(k - q) 
Pkaks 

(B.3.10) 

We have to be very careful with +s, since it depends on kt as well as on q. From (k-q)’ = 0 
we conclude that 

Bkaps = (q - kt)* (B.3.11) 

Next, we consider the diagram in fig. 3.12.b. The value of pi is now given by the condition 
(q-k$l+u+Q)2=0. 

b + ha = Pk (B.3.12) 

For the gluon vertex we have: 
- 2&,4~ - k)) (B.3.13) 

This was already calculated in (B.2.18). W e only need the leading order in I,, since the 
second I, comes along with the polarization vector of the left t-channel gluon. The propagator 
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(I+u:k)2 J ‘ust reduces to $. So we start our calculation with 

- (2~,,r,(~-k))~(~+~)~a-Eti+a+~~~ 
k: s 

(B.3.14) 
For (q - k t 1+ u)” we get /&(Y,$ Further steps lead exactly to the same result as in 
(B.3.10). 

We continue with diagram 3.12.~. The condition that (q $ I $ Q)’ equals zero fixes the 
value of /3,: 

p, = 0. (B.3.15) 

The gluon vertex is the same as in diagram 3.12~~ Instead of expanding the factor & we 

now have to expand the propagator & : 

(q:,)z M (l- 2(1$)) 

Considering the fermion contribution 

2(k,d-k)) a(q+Q)84+i+62Tt @ti it+& 
k,2 S ' (4 t 1)' PI + Pk "(' - ') = 

(B.3.17) 

we find: 
2&, 47~ - k)) u(q + &I 7 4 + L l, t i, 

kT 
tlr (q + 1)2 iok v(k - 4 = (B.3.18) 

Expansion and integration over the azimuth angle of 6, leads to 

@t(u - k) $ &(u - k)i, - 2(qt’tt(u - “))& 
Q2 1 v(k - q) (B.3.19) 

Finally, we have to investigate the diagram in fig. 3.12.d. Due to the relat,ion (q-l-u)’ = 
0 we get for /31: 

PI = -put&. 
P 

(B.3.20) 

We do not need to expand in this case, since the numerator is already proportional to 1:. 
The gluon vertex coincides with that in diagram 3.12.b. 

%,G(u - k)) u(q + &) y 1 it 4 - i - c 

k,Z fir 42 p1+ A qs “(k - 4) x (B.3.21) 

44 



This is simply evaluated to be 

2(L 4~ - k)) - 
kt”h? u(q t Q) 7tytrr $4 (4 - it) v(k - q) r (B.3.22) 

which results in the same expression as in eq. (B.3.19). 

We now sum up all contributions discussed so far: 

-&$WQhG (~-E,)i,(~-fi)(qp~k~~* 1 
+ @t(u - k) t it(v - k)it 

_ ‘4qtt 4~ - 4)41;: 
Q2 

t 
I 

v(k _ q) (B.3.23) 

We have to remind that with respect to the colour diagram 3.12.a and 3.12.~ have opposite 
sign. The expression above could be brought into the following form: 

- 2 3 u(q t Q) -/tp 2(qt> ct(u - k)) (4 - W t q* qz (q - W 

From now on we have to look at the above expression squared. We leave the factor -k$ 

aside. 

-3 SE’ { 0’ [2(Wtb - k)) ((’ izkt” t (q T;,)2) - 2(kt, ct(u - k)) (q T’,,, 

- 
( 

2 
1t 

kTW ) 
&(u - k)pk$ + ‘(“j ‘$ - k))&/3ki;] (B.3.25) 

@ - ‘8 [2(qt, tt(u - k)) ((’ izkt” t (q T;,)l) - 2(kt, tt(u - k))(q ‘;t)z 

2 
- 1-k 

(4 _” k$ 
ijk&(u - k) + 2(qt’ “;$ - “))u,$,] } 

The trace is easily evaluated, but the reduction afterwards is quite lengthy. We frequently 
make use of the following equations: 

(qt - kt)’ = (1 - z)(q- kt)* ; 

q2 - qf = z(q- kt)’ (B.3.26) 
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where we define z as e. Expression (B.3.25) then transforms into t 

- yF { (1 - 22 $222)) (q ‘& - 4 “$(--~$ 

+ 2(1 - z) + (1 - 2t + 42’) (’ - Ict)* 
q2 

_ 2z (q - k? + 2zz (4 - ktJ6 
q4 

(B.3.27) 

Since we are interested in the higher twist contribution 5, we will expand the above ex- 

pression with respect to the smallness & . In order to do this we first have to express 

9 in terms of lktl , Iqj and the azimuth angle cp : 

(q - W 
QZ 

N 1 - 2534 msp + IktlZ 
14 

Iqlz(l-2 2 co2 p) (B.3.28) 

This expression introduced in (B.3.27) leads to the final answer 

32Pks 

f? 
1 - 22 + 2r2 $ 32(1 - 2)(2z - 1) $ 

The first term in curly brackets is the standard Altarelli-Parisi splitting function. The result 
that we were looking for is the next to leading contribution, i.e. the second term in curly 
brackets. 

In fig. 3.14 we present one example of a set of diagrams which do not contribute. The 
reason is simple. The diagram 3.14 gives instead of one factor i the less singular $. After 

squaring, the result will be proportional to ??I* k;> whereas the leading contributions 
corresponding to diagram 3.12 are of the order of 1. 

To conclude this subsection we have to add the colour coefficient which corresponds to 
expression (B.3.29). All our calculations were normalized to diagram 3.12. Looking at this 
diagram squared (fig.3.15) we get 

1 N2 
ijN2, (B.3.30) 
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Figure Captions: 

f;s, 1.1: Relation between the diffractive dissociation and triple Pomeron diagram. 

fig. f.2 Diffractive dissociation with Pomeron exchange. 

fig. 2.1: The Pomeron as QCD-ladder. 

f;s. 2.2 The &CD-model of the diffractive dissociation in the Triple Regge Limit. 

fig. 2.3: Graphical representation of the Pomeron proton interaction described by the 
amplitude M. 

fig. 2.4: Screening (shadowing) correction to the proton structure function. 

fig. 2.5: Additional gluon production leading to logarithmic contribution below the cell 
with $-integration. 

fig. 3.f: Complete set of diagrams which contribute to the two quark production at 
Born level. 

fig. 3.2 u-channel contribution corresponding to the diagrams in fig. 3.1. 

Jg. 3.3: We use these diagrams to explain the Ward identity in the t-channel. 

fig. 3.4: Graphical representation of the colour singlet projector. 

fig. 3.5: The colour contents of this diagram leads to the factor CF. 

fig. 3.6: The squared amplitude of two quark production (Born level). 

fig. 3.1: The first set of diagrams for the three jet production (two quarks and one gluon) 

f;s. 3.3~ The second set of diagrams for the three jet production 

fig. 3.9: One example of diagrams which does not contribute in the leading log ap- 
proximation. The diagram is the same as in fig 3.8.c, but the kinematic is 
different. 

48 



fig. 3.10: Colour coefficient of the three jet production. 

fig. 3.11: The squared amplitude of the three jet production. The gluon jet in a) has a 

distribution 3 whereas in b) it has the log distribution 3. 

fig. 3.12 Three jet production which corresponds to the higher twist contribution $$. 
The circle which is drawn for the triple gluon vertex indicates the necessity to 
use the effective vertex which consists of the sum of the three diagrams in fig. 
3.13. 

fig. 3.19: Contributions to the effective vertex in fig. 3.12. 

fig. 3.14: Noncontributing diagram. 

Jig. 3.15: Colour structure which corresponds to the square of the diagrams in fig. 3.7 
and 3.8. 

f;s. 4.f: Generalization to any number of jet emission. 
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